
 These slides/notes represent only part of the course, and were 
accompanied by face-to-face explanations on white-board and 
additional topics / learning materials.

 In preparation of these slides I have also benefited from various 
books and online material.  

 Some of the slides contain animations which may not be visible 
in pdf version.

 Corrections, comments, feedback may be sent to 
https://www.linkedin.com/in/naveedrazzaqbutt/

https://www.linkedin.com/in/naveedrazzaqbutt/


EE 302 
Probabilistic Methods in 

Electrical Engineering
with

Dr. Naveed R. Butt

@

Jouf University



EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
3

Introductions …

• Me

• You

• The Course
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Important Business!!

• 75% attendance is mandatory!

• Textbooks
• Peyton Z. Peebles, JR, Probability, Random Variables and Random Signal Principles, 4th 

Edition, McGraw-Hill, 2002

• D. C. Montgomery & G. C. Runge,  Applied Statistics and Probability for Engineers, 6th Edition, 
Wiley, 2013

• Contact
• nbutt@ju.edu.sa

• office: 1140

mailto:nbutt@ju.edu.sa
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Learning Plan

• Lectures
• Help discover and grasp new concepts

• Quizzes (six)
• Help prepare/revise each week’s concepts
• Keep you from lagging behind in course

• Course Project
• Helps learn independent work & presentation
• Prepares for final year project

• Exams (Mid-1, Mid-2, Final)
• Help prepare entire course material

60%
12%

12%

12%
4%

Weightage

Final Mid 1 Mid 2 Quizzez Project
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Assessment Plan
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In this course we will see …

• What is “probability” and what are its fundamental principles

• How can probabilities be assigned to different kinds of events

• What are the different types of random variables

• What is meant by a probability distribution and what are the 
different common probability distributions

• How can we see the link between various random events

• What are random processes and some of their characteristics



Course Learning Objectives (CLOs)

CLO # Domain Description Assessment

CLO 1 Cognitive Skills Calculate probabilities of events, joint probabilities,

conditional probabilities using set operations and definition of

probability. Justify valid and invalid probability assignments,

and independence of events.

HW, Quiz, Mid, 
Final

CLO 2 Cognitive Skills Calculate probability mass function parameters, moments and

functions of discrete single and multiple random variables.
HW, Quiz, Mid, 
Final

CLO 3 Cognitive Skills Calculate probability density function parameters, moments

and functions of continuous single and multiple random

variables.

HW, Quiz, Mid, 
Final

CLO 4 Cognitive Skills Analyze random processes and effects of linear systems on

random processes
HW, Final

CLO 5 Communication Demonstrate the ability to research a topic related to

probability and formally present the results

Project 
Presentation
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What is “probability”?
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What is “probability”?

• Probability is a “lack of knowledge”!
• We know you are here today. We are sure.

• But will you be here in the next lecture? We are not sure anymore! There is 
now a “lack of knowledge”
• “perhaps”, “maybe”, “probably”
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Why do we sometimes lack knowledge?
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Why do we sometimes lack knowledge?

• Future
• A dice you haven’t rolled yet

• How can we know which number it will show!

• Too hard to collect all the information
• Which places did you visit today?

• It may be possible to have a drone camera follow you all the time. Then we will not have 
“lack of knowledge” about places you go to. But this is too hard a thing to do.

• Quantum randomness
• Where’s the electron?

• According to current consensus, processes and properties at quantum level are 
probabilistic by their very nature.
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Why study probability?
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Why study probability?

• Height of the next student who enters the room.
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Why study probability?

• Height of the next student who enters the room.
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Why study probability?

• Height of the next student who enters the room.
• There is lack of knowledge about it!

• But that lack of knowledge is not “absolute”
• We do know something about the heights of humans and can make some “guesses” 

based on whatever information we have (based on observation, experience, statistics)

• Such guesses can help us design the height of the doorway (for instance).
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Probability theory helps us make sense of an 
uncertain world!
• It helps us make smart guesses about uncertain events

• Based on the smart guesses we can plan, design, or take steps to 
better control the situation  
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Questions?? Thoughts??



EE 302 
Probabilistic Methods in 

Electrical Engineering
with

Dr. Naveed R. Butt

@

Jouf University



EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
2

A set of possibilities …



EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
3

A set of possibilities …

• Suppose we roll a dice

• Before we can say something about the possibility of seeing a 
particular number, we have to determine what is possible and what is 
not.

• We need to define a set of possibilities for the dice rolling!

[1 2 3 4 5 6] [0 7 8 … ]
“Set” of possible 

outcomes
“Set” of impossible 

outcomes 



EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
4

A set of possibilities …

[1 2 3 4 5 6]
“Set” of possible 

outcomes

Universal Set or Sample Space 
(S) for the die rolling experiment



EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
5

“Probability” and “Sets” go hand-in-hand!

• Understanding sets is an important part of understanding probability.
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Definition: Set

• A set is a collection of objects

• The objects are called “elements” of the set

𝐴 = 𝑎, 𝑏, 𝑐, 𝑑

𝑎 𝜖 𝐴

𝑒 ∉ A
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My students …
Dr. Naveed’s 

students

Students in 
EE302 Students in 

EE328

A

B C
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Basic set operations…
Dr. Naveed’s 

students

Students in 
EE302 Students in 

EE328

A

B C

B = { my students in EE302 }
C = { my students in EE328 }

B U C = my students who are in EE302 or in EE328 = 
all of my students this term

B    C = my students who are in both EE328 and
EE302 (multicolor)

B – C = my students who are in EE302 but not in 
EE328 (yellow)

C – B = my students who are in EE328 but not in 
EE302 (red)

∩

(assuming I am teaching only two courses this term)
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Dr. Naveed’s 
students

Students in 
EE302 Students in 

EE328

A

B C

D

𝐃 ⊆ 𝐂 (all elements of D are also in C)

B ∪ 𝐂 = 𝐂 ∪ B

B ∩ 𝐂 = 𝐂 ∩ 𝐁

𝐁 − 𝐂 ≠ 𝐂 − 𝐁

𝐀 − 𝐁 ∪ 𝐂 = ∅ (empty set)

We also see that:
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Some formal definitions …

• An “empty” set is a set with no elements
• ∅ = {}

• Two sets A and B are “mutually exclusive” or “disjoint” if they have 
no common elements
• 𝑨 ∩ 𝑩 = ∅

• A “universal set” is the largest or all-encompassing set of objects 
under discussion (usually denoted S or U)

• The complement of a set A is a set of all elements not in A
• ഥ𝑨 = S - A
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Some formal definitions …

• Two sets are “equal” if they are both subsets of each other (i.e., they 
have exactly the same elements)
• 𝒊𝒇 𝑨 ⊆ 𝐁 𝐚𝐧𝐝 𝐁 ⊆ 𝐀 𝐭𝐡𝐞𝐧 𝐀 = 𝐁
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Three Ways of Defining a Set

• A set may be defined in three ways
• Tabular method: we list (write) all the elements of the set

• Rule method: we describe a rule for elements of the set

• Operation method: we define the set as a result of some operation

A = {Abdallah, Mishari, Yazeed, Bandar, Basil, Badr, Abdullateef, Samir}

A = {students in EE302 second semester 2019}

C = B - A

Tabular

Rule

Operation
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Notation
• Notation for Union and Intersection when more than two sets are 

involved
• Recall that that when we add several variables we can denote the sum by 

using the symbol “sigma” 

• Similarly, union and intersection of several sets can be denoted as
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Some properties of sets…

• Commutative, distributive and associative properties of union and 
intersection.
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Some properties of sets…

• De Morgan’s Laws
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Some properties of sets…

• Duality Principle
• “if in an identity we replace unions with intersections, and intersections with 

unions, and also replace universal set (S) with empty set (∅), and empty set 
with universal set then identity remains valid”.

If one is valid, then so is the 
other!



Example Problems
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Questions?? Thoughts??
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In the last lecture, we saw that …
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Quick Revision (1)

• A set is a collection of objects

• Objects in a set are called elements of the set

• We often need sets to define probabilities

• The set of all possible outcomes in a situation is called the universal 
set or sample space (denoted S)

• A set with no elements is called an empty set (denoted ∅ or {})

• We saw how some sets are related to each other
• Subset: when all the elements of set A can be found in set B

• Equality: when two sets have exactly the same elements

𝐴 = 𝑎, 𝑏, 𝑐, 𝑑

𝑎 𝜖 𝐴

𝑒 ∉ A

(𝑨 ⊆ 𝐁)

(𝑨 = 𝐁)
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Set = collection of objects

Students in 
EE302
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A set of possibilities …

[1 2 3 4 5 6]
“Set” of possible 

outcomes

Universal Set or Sample Space (S) 
for the die rolling experiment
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Quick Revision (1)
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My students…
Dr. Naveed’s 

students

Students in 
EE302 Students in 

EE328

A

B C

D

B ⊆ 𝐀 (all elements of B are also in A)
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Quick Revision (2)

• We saw how we can check equality of two sets
• 𝒊𝒇 𝑨 ⊆ 𝐁 𝐚𝐧𝐝 𝐁 ⊆ 𝐀 𝐭𝐡𝐞𝐧 𝐀 = 𝐁

• We learned that two sets are completely different (mutually exclusive or disjoint) 
if they have no elements in common
• Check for mutual exclusiveness : 𝑨 ∩ 𝑩 = ∅

• We also saw some operations we can perform on sets
• Union: 𝑨 ∪ 𝑩 take all the elements of the sets A and B
• Intersection: 𝑨 ∩ 𝑩 = take only those elements which are common between A and B
• Difference: 𝑩 − 𝑨 = remove from B all those elements which are also present in A
• Complement: ഥ𝑨 = 𝑺 − 𝑨 (remove all elements of set A from universal set S) 

• Finally, we discussed some useful properties of set operations
• Commutative, Distributive, Associative
• De Morgan’s Laws
• Duality Principle
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Quick Revision (2)
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Commutative 
Property

Distributive 
Property

Associative 
Property
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De Morgan’s 
Laws

Duality 
Principle

“if in an identity we replace unions with 
intersections, and intersections with 
unions, and also replace universal set (S) 
with empty set (∅), and empty set with 
universal set then identity remains valid”.
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Today …

• We will go through some examples

• And, see how we can assign probabilities to random events
• What is the process?

• What are the conditions?



Definition: Random Event

• An outcome (or result) we are not sure about.
• Example: when we toss a coin the occurrence of a head or tail is a random 

event.
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Defining “Probability” of a Random Event
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A set of possibilities …

[1 2 3 4 5 6]
“Set” of possible 

outcomes

Universal Set or Sample Space 
(S) for the die rolling experiment
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How do we assign probabilities to random 
events?
• What is the process?

• What are the conditions?
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Let’s play …

• Assume there is a bag with only one ball in it which is yellow
• You put your hand in the bag, and without looking, take a ball out and note its 

color

• What are the possible outcomes? 

S = {Yellow}
Set of all the 
possible outcomes
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Let’s play …

• What is the probability that the ball you draw is yellow?

S = {Yellow}Set of all the 
possible outcomes

A = {Ball drawn is Yellow}Outcome of our 
interest

Event

Universal Set

P(A) = P(yellow ball) = 1 100% (sure)
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Let’s play …

• Now assume there are two balls in the bag, yellow and red
• You put your hand in the bag, and without looking, take a ball out and note its 

color

• What are the possible outcomes? 

S = {Yellow, Red}
Set of all the 
possible outcomes
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Let’s play …

• What is the probability that the ball you draw is yellow?

S = {Yellow, Red}Set of all the 
possible outcomes

A = {Ball drawn is Yellow}Outcome of our 
interest

Event

Universal Set

P(A) = P(yellow ball) = 1/2 50% chance
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Let’s play …

• What is the probability that the ball you draw is yellow?

S = {Yellow, Red}Set of all the 
possible outcomes

A = {Ball drawn is white}Outcome of our 
interest

Event

Universal Set

P(A) = P(white ball) = 0 impossible
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Let’s play …

• What is the probability that the ball you draw is yellow or red?

S = {Yellow, Red}Set of all the 
possible outcomes

A = {Ball drawn is Yellow or Red}Outcome of our 
interest

Event

Universal Set

P(A) = P(red or yellow ball) = 1
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Let’s play …

• Assume we throw a die, and note the number it shows
• What are the possible outcomes now?

S = {1 2 3 4 5 6}
Set of all the 
possible outcomes
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Let’s play …

• What is the probability that it shows 4?

S = {1 2 3 4 5 6}Set of all the 
possible outcomes

A = {shows 4}Outcome of our 
interest

Event

Universal Set

P(A) = 1/6 = size(A)/size(S)

We use this “size” or element 
counting approach only if all 

events are equally likely 
(equally likely = have equal 

chance of happening)
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Let’s play …

• What is the probability that it shows an even number?

S = {1 2 3 4 5 6}Set of all the 
possible outcomes

A = {shows 2, 4, or 6}Outcome of our 
interest

Event

Universal Set

P(A) = 3/6 = size(A)/size(S)
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Let’s play …

• What is the probability that it shows a number from 1 to 6?

S = {1 2 3 4 5 6}Set of all the 
possible outcomes

A = {shows 1,2,3,4,5,or 6}Outcome of our 
interest

Event

Universal Set

P(A) = 6/6 = size(A)/size(S)
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Assigning probabilities is a five-step process

• Step 1: Define the experiment
• “let’s roll a die”

• Step 2: Define all the possible outcomes of the experiment, i.e., define the 
universal set that applies to your experiment
• S = {1 2 3 4 5 6}

• Step 3: Define what outcome you would like to see (we call it “event”)
• A = {die show even number} = {2 4 6}

• Step 4: Assign probability to the event
• P(A) = 3/6 = ½

• Step 5: Make sure that the assigned probabilities “make sense”
• The Three Conditions (discussed later today)!
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Example Problems
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Event Types: Equally Likely

• Equally Likely
• Events that have equal chances of occurring are called “equally likely” events

• E.g., when tossing a coin, there are equal chances of H and T

• Sometimes we use common sense to claim that some events are equally likely

• At other times we may be given equal probabilities assigned to events, and consequently 
may claim them to be equally likely
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Event Types: Mutually Exclusive

• Mutually Exclusive
• Events that cannot occur at the same time are called mutually exclusive

• E.g., when tossing a coin a head (H) and tail (T) cannot occur at the same time

• In sets, we check it this way: if the intersection of two events is empty set then they are 
mutually exclusive
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Event Operations: Probability of a Union

P (A or B)
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Event Operations: Probability of a Union
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Event Operations: Probability of Intersection

• When we assign probabilities to two or more events happening at the 
same time, we call it joint probability

• More on this later…

P(A and B) = P(A ∩ B)
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Event Operations: Probability of Complement

P (not E)
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Assigned probabilities must satisfy three conditions!!

• Condition 1: Assigned probabilities should not be negative or greater than 1.

• Condition 2: Universal set should cover all the possible outcomes

• Condition 3: Probabilities assigned to mutually exclusive events should make 
sense
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Let’s check …

S = {1 2 3 4 5 6}

A = {1}, B = {2}, C ={3}, D = {4}, E = {5}, F = {6}, G = {2 4 6}, …

P(A) = 1/6 , P(B) = 1/6, P(C) = 1/6, P(D) = 1/6, P(E) = 1/6, P(F) = 1/6, P(G) = 1/2

P(S) = P (die shows 1, 2, 3, 4, 5, or 6) = 1

P(A U B) = P(A) + P(B)

P(A U B U C) = P(A) + P(B) + P(C)

etc…

Universal Set

Events

Assigned 
probabilities are 
not negative

Defined universal set covers 
all the possible outcomes

Mutually exclusive events 
satisfy the third condition
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Previously, we played dice…

• We throw a die, and note the number it shows
• What are the possible outcomes?

• What is the probability that it shows 4?

S = {1 2 3 4 5 6}Set of all the 
possible outcomes

A = {shows 4}Outcome of our 
interest

Event

Universal Set

P(A) = 1/6 = size(A)/size(S)

We were assigning probabilities to 
individual events
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Sometimes we need to assign probabilities to 
multiple events!!
• Let’s say its 8 am, and let’s define two events

A = {Ali is in lecture}
B = {Ali is sleeping}

Event one

Event two

• What is the probability that Ali is in lecture and sleeping? 

P(A and B)
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Joint Probability

• When we assign probabilities to two or more events happening at the 
same time, we call it joint probability

• Using sets, we can define the joint probability of two events as 

P(A and B)

P(A and B) = P(A ∩ B)
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Let’s play again …

• We throw a die, and note the number it shows

• Let us define two events of interest

S = {1 2 3 4 5 6}

A = {shows odd number} Event one

Universal Set

P(A and B) = P(A ∩ B) = 0

B = {shows even number} Event two

P(A ∩ B) = size(A ∩ B)/size(S) = 0/6=0

How?

A ∩ B = {} (empty)
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Let’s play again …

• We throw a die, and note the number it shows

S = {1 2 3 4 5 6}

C = {shows 1, 2 or 3} Event one

Universal Set

P(C and D) = P(C ∩ D) = 1/3

D = {shows 2, 3, or 4} Event two

P(C ∩ D) = size(C ∩ D)/size(S) = 2/6=1/3

How?

C ∩ D = {2 3} 
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Sometimes knowledge of one random event can help us 
assign probability to another random event

A = {Ali is in lecture at 8 am}
B = {Ali is sleeping at 8 am}

Event one

Event two

• Suppose I tell you that Ali is in the lecture at 8 am. Now what are the 
chances that he is sleeping?

P(B given A)
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Let’s toss a coin …

• Suppose I toss a coin but do not show you the result
• What is the probability that it shows Head?

• A = {shows Head}

• S = {H T} (universal set)

• P(A) = ½

• Suppose now that I tell you that it shows Tail
• Now what is the probability that it shows Head?
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Let’s toss a coin…

A ∩ B = {} (empty)

Situation before additional information Situation after additional information

S = {H T}

P{A} = 1/2

S = {H T}

P{A| new information} = 0

X
“H” is no longer in 
the set of 
possibilities (it has 
become impossible)

A = {shows Head}

Universal Set

A = {shows Head}
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Another example …

• Suppose I write a number from 1 to 4 on a piece of paper but do not 
show you what I wrote
• What is the probability that I wrote 3?

• A = {wrote 3}
• S = {1 2 3 4} (universal set)
• P(A) = size(A)/size(S) = ¼ 

• What is the probability that I wrote an odd number?
• B = {wrote 1 or 3}
• S = {1 2 3 4} (universal set)
• P(B) = size(B)/size(S) = 2/4 = ½ 

• Suppose now that I tell you that I wrote an odd number.
• Now what is the probability that I wrote 3?
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Another example …

A ∩ B = {} (empty)

Situation before additional information Situation after additional information

S = {1 2 3 4}

P{A} = ¼ Snew = {1 2 3 4}

P{A given B} = P{A|B} = 1/2

X

A = {wrote 3}

Universal Set

A = {wrote 3}

B = {wrote odd number}

X Updated 
Universal Set
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Conditional Probability

• When we assign probabilities to an event assuming (or knowing) that 
another has happened, we call it conditional probability

• Using sets, we define the conditional probability as 

P(A given B) 

P(A | B) = 
P(A ∩ B )
P(B)

P(A | B) also written as

Joint probability 
of A and B

Important assumption : P(B) ≠ 0
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Let’s play again …

• We throw a die, and note the number it shows

S = {1 2 3 4 5 6}

A = {shows 1, 2 or 3}

B = {shows 2, 3, or 4}

P(A ∩ B) = size(A ∩ B)/size(S) = 2/6=1/3

How?

A ∩ B = {2 3} 

P(A | B) = 
P(A ∩ B )
P(B)

= 
1/3

1/2
= 2/3 

P(B) = size(B)/size(S) = 3/6=1/2
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Independence : when knowledge of one event 
does not change the probability of another

• Sometimes knowledge of one event does not affect the probability of 
another event. 
• In such a situation, we say that the two events are statistically independent

• Example: knowing what time I woke up this morning will not affect the result 
of a coin toss

• How can we check independence?

P(A | B) = P (A) 

P(A ∩ B) = P(A) P(B) 

Test 1: If the conditional probability remains 
unchanged, then the two events are independent

Test 2: If the joint probability is simply the product of 
individual probabilities, then the two events are independent



When we know events are independent…

• An important consequence of knowing that two events are 
independent is that we can use the following substitutions where 
needed
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P(A | B) = P (A) 

P(A ∩ B) = P(A) P(B) 
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Can we check independence of more than 
two events?
• Yes!

• For three events to be statistically independent, all their combinations 
should satisfy test 2, i.e., they must satisfy all of the following

• Similarly, for N events to be statistically independent, all their combinations 
should satisfy test 2.
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Two formulas that help us in assigning 
probabilities 

Total Probability

Bayes’ Theorem

Events Bn must satisfy 
these conditions

i.e., these should be 
mutually exclusive and 
should cover all S.
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Counting

• In assigning probabilities we often need to “count” how many ways 
something can happen
• Toss a coin twice, and define event

• A = {we get at least one Tails}

• S = {HH HT TH TT}

• Count total number of ways two coin tosses can result: four (HH, HT, TH, TT)

• Count number of ways A happens: three (HT , TH, TT)

• P(A) = 3/4
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Counting: Two Questions to Ask

• Question1: Does order matter?

• Question2: Is repetition (replacement) allowed?
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Question1: Does order matter?
Question2: Is repetition allowed?

Ali

Zaid

Bakr

Game: choose two of these and I will give 10 
Riyals to each. Cannot choose same person twice.

Here: 
(1) ORDER DOESN’T MATTER
(2) REPETITION NOT ALLOWED

Possible choices: three
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Question1: Does order matter?
Question2: Is repetition allowed?

Ali BakrGame: choose two of these. I will give 10 
Riyals to first one and 5 Riyals to second one. 
Cannot choose same person twice.

Possible choices: six

Bakr Ali

Ali Zaid Zaid Ali

Zaid Bakr Bakr Zaid

Here: 
(1) ORDER MATTERS
(2) REPETITION NOT ALLOWED
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Question1: Does order matter?
Question2: Is repetition allowed?

Game: choose two of these. I will give 10 
Riyals to first one and 5 Riyals to second one. 
You are allowed to choose the same person 
twice.

Possible choices: nine

Here: 
(1) ORDER MATTERS
(2) REPETITION IS ALLOWED

Note: most number of possibilities when order 
matters and repetition is allowed!

Ali Bakr Bakr Ali

Ali Zaid Zaid Ali

Zaid Bakr Bakr Zaid

Ali Ali

Bakr Bakr

Zaid Zaid



How to choose counting formula!
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Total objects = n
Objects to choose (or number of places to fill) = r

Order
Matters?

Repetition
Allowed?

What to do. Formula

Yes Yes Use Powers 𝑛𝑟

Yes No Use Permutations
𝑛𝑃𝑟 =

𝑛!

𝑛 − 𝑟 !

No No Use Combinations 𝑛𝐶𝑟 =
𝑛!

𝑛 − 𝑟 ! 𝑟!

Note: for “without replacement” cases 
𝑟 ≤ 𝑛

Recall 5! = 5 x 4 x 3 x 2 x 1
And 0! = 1 
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Applying the counting formulas Ali ZaidBakr

Game: choose two of these three 
students and I will give 10 Riyals to each. 
Cannot choose same person twice.

Here: 
(1) ORDER DOESN’T MATTER
(2) REPETITION NOT ALLOWED
(3)𝐧 = 𝟑, 𝐫 = 𝟐

𝑛𝐶𝑟 =
𝑛!

𝑛 − 𝑟 ! 𝑟!

3𝐶2 =
3!

3 − 2 ! 2!
= 3

Game: choose two of these three 
students and I will give 10 Riyals to first 
one and 5 Riyals to second one. Cannot 
choose same person twice.

Here: 
(1) ORDER MATTERS
(2) REPETITION NOT ALLOWED
(3)𝐧 = 𝟑, 𝐫 = 𝟐

𝑛𝑃𝑟 =
𝑛!

𝑛 − 𝑟 !

3𝑃2 =
3!

3 − 2 !
= 3! = 6

Game: choose two of these three 
students and I will give 10 Riyals to first 
one and 5 Riyals to second one. You are 
allowed to choose the same person twice.

Here: 
(1) ORDER MATTERS
(2) REPETITION ALLOWED
(3)𝐧 = 𝟑, 𝐫 = 𝟐

𝑛𝑟 = 32 = 9
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Questions?? Thoughts??
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Random Event  Random Variable

• Let’s talk about the next student who enters the room. 
• X = number of mobiles he has

• Y = his height

• Z = is he from Jouf region?

• What are the possible values of X, Y, and Z?
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Random Event  Random Variable

• Let’s talk about the next student who enters the room. 
• X = number of mobiles he has

• Y = his height

• Z = is he from Jouf region?

• What are the possible values of X, Y, and Z?
• X = 0, 1, 2, 3 … mobiles. Only fixed values (discrete)

• Y = Height in cm. Any value in a certain range (continuous)

• Z = Yes or No (just description, no numeric values)
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Random Event  Random Variable

• All three, X, Y, and Z are random events, but …
• X is a discrete random variable

• Y is a continuous random variable

• Z is not a random variable! (to qualify for random variable it must have 
numeric values)
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What is a Random Variable?

• A random variable
1. Is a variable whose value depends on the result of a random occurrence

2. Always takes numeric values (NOT descriptions)

3. Can be continuous or discrete

4. Must satisfy some additional conditions (such as 𝑃 𝑋 = ∞ = 0 etc.)
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Random Event  Random Variable

• We can convert a random event to random variable by assigning 
numeric values to descriptive outcomes



EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
7

Possible outcomes 
(descriptive)

Possible outcomes 
(numeric)

Z = Next student who enters the room, is he from Jouf region?

Yes

No
1

0

Z = 1 if next student entering the room is from Jouf
Z = 0 if next student entering the room in not from Jouf

Not a random variable yet.

Now Z is a random variable!!
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Random Event  Random Variable

• We can convert a random event to random variable by assigning 
numeric values to descriptive outcomes

• Z = Next student who enters the room, is he from Jouf region?
• Possible outcomes, Z = Yes or No

• Z is not a random variable as its values are not numeric

• We can convert Z into a random variable by mapping Yes = 1, No = 0

• Then possible outcomes are Z = 1 or 0
• Now Z is a random variable 
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Collecting Probabilities

• Once again, let’s talk about the next student who enters the room. 
• X = number of mobiles he has

• Y = his height

• X and Y are random variables. We will denote the values they take by small 
letters x and y.

• How do we represent the probabilities of the different values of X and 
Y?
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We could make a table …

x P(X = x)

0 0.1

1 0.6

2 0.2

….. …..

X = number of mobiles next 
student entering the room has
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Or, we could draw a graph …

y

P
(Y

 =
 y

)

Y = height of the next student 
entering the room
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Or, we could write probabilities as a function 
(formula) …

Z = result of rolling a die𝑓 𝑧 =
1

6
𝑧 = 1, 2,… , 6

X = student height
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Collecting Probabilities

• How do we represent the probabilities of the different values of X and 
Y?
• We could write them in a table

• Draw them as a graph

• Or, write them as a mathematical function (formula)
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Probability Mass Function (PMF): 𝑓(𝑥)

• First we will focus on discrete random variables (e.g. X in previous 
slides)

• The formula showing the probabilities of different values of X is called 
probability mass function (PMF)

𝑓 𝑥 = 𝑃(𝑋 = 𝑥)

Probability that X 
takes the value x
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Three Conditions 𝑓(𝑥) Must Satisfy

Assigned probabilities cannot be negative Probabilities of all possible values of X must add 
up to 1 (neither more nor less than 1)

f(x) must represent probabilities
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Let’s play …

• Let’s assume there is a bag with three balls in it with numbers 1 – 3 
written on them. You draw one ball at random.
• X = number written on the ball (random variable)

• x = 1, 2, 3 (possible values of X)

• 𝑓 𝑥 = 𝑃(𝑋 = 𝑥) 𝒙 𝒇(𝒙)

1
1

3

2
1

3

3
1

3

Note that 𝑓 𝑥 satisfies the 
three conditions
1. Its always non-negative
2. Sums up to 1
3. It assigns probabilities to 

each value of X
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Cumulative Distribution Function (CDF): 𝐹(𝑥)

• Sometimes we like to talk about what range of values a random 
variable may take
• What is the probability that the next student entering the room has more 

than two mobiles? i.e., P(X > 2) = ?

• What is the probability that the next student entering the room has two 
mobiles or less?, i.e., P(X ≤ 2) =?

• For such cases, the Cumulative Distribution Function (CDF) is useful.
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Cumulative Distribution Function (CDF): 𝐹(𝑥)

𝐹 𝑥 = 𝑃(𝑋 ≤ 𝑥)

𝐹 𝑥 = σ𝑥𝑖≤𝑥 𝑓(𝑥𝑖)

Probability that X 
takes a value less 
than or equal to x

CDF of a discrete 
random variable is just 
the sum of the PMF 
values for 𝑥𝑖 ≤ 𝑥
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Cumulative Distribution Function (CDF): 𝐹(𝑥)

𝑓(𝑥)

𝑭(𝒙)
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𝑃 𝑋 ≤ 3 = sum of all these possibilities = 
1

6
+

1

6
+

1

6
= 0.5
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Three Conditions 𝐹(𝑥) Must Satisfy

CDF of a discrete 
random variable is just 
the sum of the PMF 
values for 𝑥𝑖 ≤ 𝑥

Like probabilities, CDF 
always lies between 0 and 1. 

CDF is always an increasing function
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Let’s play …

• Let’s write 𝐹 𝑥 for the three balls example

𝒙 𝒇(𝒙) 𝐹 𝑥 = 𝑃(𝑋 ≤ 𝑥)

1
1

3
𝐹 1 = 𝑓 1 =

1

3

2
1

3
𝐹 2 = 𝑓 1 + 𝑓(2) =

2

3

3
1

3
𝐹 3 = 𝑓 1 + 𝑓 2 + 𝑓(3) = 1 Note that 𝐹 𝑥 satisfies the 

three conditions
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We can use 𝐹(𝑥) to find many kinds of 
probabilities (ranges and values)
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Test the relations on previous slides on this 
example

𝑓(𝑥)

𝑭(𝒙)
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Joint Probability Distribution (JPD): 𝑓(𝑥, 𝑦)

• Sometimes we are interested in finding the probability of two things 
happening at the same time
• What is the probability that next student entering the room has two mobiles 

and no pen?
• X = number of mobiles he has

• Y = number of pens he has

• P(X = 2 and Y = 0) = ?

• For such cases, we use the Joint Probability Distribution (JPD)
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Joint Probability Distribution (JPD): 𝑓(𝑥, 𝑦)

𝑓 𝑥, 𝑦 = 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

Probability that X takes the value x 
and Y takes the value y
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Three Conditions 𝑓(𝑥, 𝑦) Must Satisfy

JPD can never be 
negative.

The total JPD of two 
variables should exactly be 1 
(neither more nor less).JPD should represent the joint 

probability of X and Y.
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Let’s play …

• Let’s assume there is a bag with three balls in it with numbers 1 – 3 
written on them. You draw two balls (one by one) at random.
• X = number written on the first ball (random variable)

• Y = number written on the second ball (random variable)

• x = 1, 2, 3 (possible values of X)

• y = 1, 2, 3 (possible values of Y)

• 𝑔 𝑥 = 𝑃(𝑋 = 𝑥)

• ℎ 𝑦 = 𝑃(𝑌 = 𝑦)

• 𝑓 𝑥, 𝑦 = 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)
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𝒙, 𝒚 1 2 3

1 𝑓(1,1) 𝑓(1,2) 𝑓(1,3)

2 𝑓(2,1) 𝑓(2,2) 𝑓(2,3)

3 𝑓(3,1) 𝑓(3,2) 𝑓(3,3)

𝒙, 𝒚 1 2 3

1 0
1

6

1

6

2
1

6
0

1

6

3
1

6

1

6
0

S = { (1,2) (1,3) (2,1) (2,3) (3,1) (3,3) }
All the possible outcomes (note that 
they are equally likely)

Note that 𝑓 𝑥, 𝑦 satisfies the three conditions
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Plot of a joint distribution is a three dimensional curve!Plot of a single random variable distribution is a two 
dimensional curve

𝑓(𝑥)
𝑓(𝑥, 𝑦)
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Probability over an area A

𝒙, 𝒚 1 2 3

1 𝑓(1,1) 𝑓(1,2) 𝑓(1,3)

2 𝑓(2,1) 𝑓(2,2) 𝑓(2,3)

3 𝑓(3,1) 𝑓(3,2) 𝑓(3,3)

𝒙, 𝒚 1 2 3

1 0
1

6

1

6

2
1

6
0

1

6

3
1

6

1

6
0

𝐴 = {𝑥 > 1, 𝑦 < 3} 𝑃 𝑋, 𝑌 ∈ 𝐴 = 𝑓 2,1 + 𝑓 2,2 + 𝑓 3,1 + 𝑓 3,2 =
1

2

𝑥 > 1

𝑦 < 3
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Marginal Distribution

• Sometimes we are interested in questions such as “given the joint 
distribution of X and Y, find the distribution of X”
• This may be the case, for instance, if we have easy access to the joint 

distribution.

• The distribution of X extracted from the joint distribution of X and Y 
(by summing over all possible values of Y) is called the Marginal 
Distribution of X
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Marginal Distribution

Marginal Distribution of X

Marginal Distribution of Y

Sum 𝑓(𝑥, 𝑦) over all 
the possible values of Y

Sum 𝑓(𝑥, 𝑦) over all 
the possible values of X
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𝒙, 𝒚 1 2 3

1 𝑓(1,1) 𝑓(1,2) 𝑓(1,3)

2 𝑓(2,1) 𝑓(2,2) 𝑓(2,3)

3 𝑓(3,1) 𝑓(3,2) 𝑓(3,3)

𝑔 1 = 𝑓 1,1 + 𝑓 1,2 + 𝑓(1,3)

𝑔 2 = 𝑓 2,1 + 𝑓 2,2 + 𝑓(2,3)

𝑔 3 = 𝑓 3,1 + 𝑓 3,2 + 𝑓(3,3)

ℎ 1 = 𝑓 1,1 + 𝑓 2,1 + 𝑓(2,3)

ℎ 2 = 𝑓 1,2 + 𝑓 2,2 + 𝑓(3,2)

ℎ 3 = 𝑓 1,3 + 𝑓 2,3 + 𝑓(3,3)

𝒙, 𝒚 1 2 3

1 𝑓(1,1) 𝑓(1,2) 𝑓(1,3)

2 𝑓(2,1) 𝑓(2,2) 𝑓(2,3)

3 𝑓(3,1) 𝑓(3,2) 𝑓(3,3)

𝑔 𝑥 = marginal 
distribution of x

ℎ 𝑦 = marginal 
distribution of y
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Conditional Distribution (CD): 𝑓 𝑥 𝑦)

• Sometimes we are interested in finding the probability of an event 
given that another event has taken place.
• What is the probability that a student will get GPA 5 in this semester given 

that his CGPA till previous semester is 4.5?
• X = GPA student will get in this semester

• Y = His CGPA now

• P(X = 5 given Y = 4.5) = ?

• For such cases, we use the Conditional Distribution (CD)
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Conditional Distribution (CD): 𝑓 𝑥 𝑦)

Note:
𝑔 𝑥 = marginal distribution of X
ℎ(𝑦) = marginal distribution of Y
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𝒚|𝒙 1 2 3

1 𝑓(1|1) 𝑓(1|2) 𝑓(1|3)

2 𝑓(2|1) 𝑓(2|2) 𝑓(2|3)

3 𝑓(3|1) 𝑓(3|2) 𝑓(3|3)

𝒚|𝒙 1 2 3

1 0
1

2

1

2

2
1

2
0

1

2

3
1

2

1

2
0

𝑥

𝑦

S = { (1,2) (1,3) (2,1) (2,3) (3,1) (3,3) }
All the possible outcomes (note that 
they are equally likely)
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Statistical Independence

• Two random variables are statistically independent if knowledge of 
one does not change the probability distribution of the other.
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How to check statistical independence?

• We can prove that two random variables are statistically independent 
by showing any of the following to be true for all values of x and y.

𝑓 𝑥 𝑦 = 𝑔(𝑥)

𝑓 𝑥, 𝑦 = 𝑔 𝑥 ℎ(𝑦)

𝑓 𝑦 𝑥 = ℎ(𝑦)

Note:
𝑔 𝑥 = marginal distribution of X
ℎ(𝑦) = marginal distribution of Y
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X and Y are not statistically independent, since for many values of x and y

𝑓(𝑥, 𝑦) ≠ 𝑔 𝑥 ℎ(𝑦)

𝒙, 𝒚 1 2 3

1 𝑓(1,1) 𝑓(1,2) 𝑓(1,3)

2 𝑓(2,1) 𝑓(2,2) 𝑓(2,3)

3 𝑓(3,1) 𝑓(3,2) 𝑓(3,3)

𝒙, 𝒚 1 2 3

1 0
1

6

1

6

2
1

6
0

1

6

3
1

6

1

6
0

S = { (1,2) (1,3) (2,1) (2,3) (3,1) (3,3) }
All the possible outcomes (note that 
they are equally likely)

𝑓(2,1) ≠ 𝑔 2 ℎ(1)e.g., 



EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
41

Questions?? Thoughts??
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We have previously talked about …
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Collecting Probabilities

• Next student who enters the room. 
• X = number of mobiles he has

• Y = his height

• How do we represent the probabilities of the different values of X 
and Y?
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We could make a table …

x P(X = x)

0 0.1

1 0.6

2 0.2

….. …..

X = number of mobiles next 
student entering the room has
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Or, we could draw a graph …

y

P
(Y

 =
 y

)

Y = height of the next student 
entering the room
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Or, we could write probabilities as a function 
(formula) …

Z = result of rolling a die𝑓 𝑧 =
1

6
𝑧 = 1, 2,… , 6

X = student height
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Collecting Probabilities

• So, we collect probabilities in terms of a probability mass function 
(discrete case) or probability density function (continuous case)

Student Marks

N
u

m
b

er
 o

f 
st

u
d

en
ts
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Collecting Probabilities

Student Marks

N
u

m
b

er
 o

f 
st

u
d

en
ts
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Collecting Probabilities

Student Marks

N
u

m
b

er
 o

f 
st

u
d

en
ts
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Collecting Probabilities

Student Marks

N
u

m
b

er
 o

f 
st

u
d

en
ts
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Two Important Measures of a Random 
Variable: Mean and Variance
• Next we will talk about two important measures of a random variable 

that are often used in analysis and design instead of the full 
probability functions.

• These are Mean and Variance
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Many names: Mean/Average/Expectation

Student Marks

N
u

m
b

er
 o

f 
st

u
d

en
ts

Mean = Center of mass for the distribution (balancing point)
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Many names: Mean/Average/Expectation

Student Marks

N
u

m
b

er
 o

f 
st

u
d

en
ts

Mean = Center of mass for the distribution (balancing point)

×



EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
14

Many names: Mean/Average/Expectation

Student Marks

N
u

m
b

er
 o

f 
st

u
d

en
ts

Mean = Center of mass for the distribution (balancing point)
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Many names: Mean/Average/Expectation

Student Marks

N
u

m
b

er
 o

f 
st

u
d

en
ts

Mean = Center of mass for the distribution (balancing point)

× ×
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Variance = degree of spread (how much 
variation is there in the data/outcomes?)

Medium variance
Low variance

High variance
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How shall we write Mean and Variance 
mathematically?
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Mean: Let’s play a game …

• Suppose I invite you to a game of toss with following rules
• We toss several times (e.g., 100 tosses)

• Every time H appears I give you 10 Riyals

• Every time T appears I take from you 10 Riyals

• How much can you expect to win on average?
• Is there any point in playing this game?
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Mean: Let’s play a game …

-10 10
0

𝑃 𝐻 = 𝑃 𝑇 =
1

2

𝑓 10 = 𝑓 −10 =
1

2

𝑓(𝑥)
1

2

Logically

Mathematically 

𝐸 𝑋 = 𝑥1𝑓 𝑥1 + 𝑥2𝑓 𝑥2 = 10 ×
1

2
+ −10 ×

1

2
= 0

Graphically

Mean = where should you place the wedge so that the 
“scales” are balanced

You win 0 Riyals on average
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Mean: Let’s play a game …

• Suppose now I change the rules slightly
• We toss several times (e.g., 100 tosses)

• Every time H appears I give you 10 Riyals

• Every time T appears I take from you 50 Riyals

• Now how much can you expect to win on average?
• Should you play such a game?
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Mean: Let’s play a game …

-50 10
0

𝑃 𝐻 = 𝑃 𝑇 =
1

2

𝑓 10 = 𝑓 −50 =
1

2

𝑓(𝑥)

1

2

Logically

Mathematically 

𝐸 𝑋 = 𝑥1𝑓 𝑥1 + 𝑥2𝑓 𝑥2 = 10 ×
1

2
+ −50 ×

1

2
= −20

Graphically

Mean = where should you place the wedge so that the 
“scales” are balanced

You will expect to lose more money

On average, you stand to 
lose 20 Riyals per toss

×
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Mean: Let’s play a game …

• Suppose we change the game to rolling a die
• We roll several times (e.g., 100 rolls)

• Every time a number above 2 appears I give you 10 Riyals

• Every time a number less or equal to 2 appears I take from you 10 Riyals

• Now how much can you expect to win on average?
• Should you play such a game?
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Mean: Let’s play a game …

-10 10
0

𝑃 𝑋 ≤ 2 =
2

6
=
1

3

𝑓 10 =
2

3

𝑓(𝑥)

2

3

Logically

Mathematically 

𝐸 𝑋 = 𝑥1𝑓 𝑥1 + 𝑥2𝑓 𝑥2 = 10 ×
2

3
+ −10 ×

1

3
= 3.33

Graphically

Mean = where should you place the wedge so that the 
“scales” are balanced

You expect to win more

𝑃 𝑋 > 2 =
4

6
=
2

3

𝑓 −10 =
1

3

1

3

×
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So,

The mean or expected value of a discrete random variable X, 
denoted 𝜇𝑋 or 𝐸 𝑋 , is given by

𝜇𝑋 = 𝐸 𝑋 =෍

𝑥

𝑥𝑓(𝑥)
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• Let’s assume there is a bag with three balls in it with numbers 1, 3, 
and 5 written on them. You draw one ball at random.
• X = number written on the ball (random variable)

• x = 1, 3, 5 (possible values of X)

• 𝑓 𝑥 = 𝑃(𝑋 = 𝑥)

𝒙 𝒇(𝒙)

1
1

3

3
1

3

5
1

3

𝜇𝑋 = 𝐸 𝑋 =෍

𝑥

𝑥𝑓 𝑥 = 1 ×
1

3
+ 3 ×

1

3
+ 5 ×

1

3
= 3
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• Let’s assume there is a bag with three balls in it with numbers 1, 3, 
and 5 written on them. You draw one ball at random.
• X = number written on the ball (random variable)

• x = 1, 3, 5 (possible values of X)

• 𝑓 𝑥 = 𝑃(𝑋 = 𝑥)

𝒙 𝒇(𝒙)

1
1

3

3
1

3

5
1

3

𝜇𝑋 = 𝐸 𝑋 =෍

𝑥

𝑥𝑓 𝑥 = 1 ×
1

3
+ 3 ×

1

3
+ 5 ×

1

3
= 3

×

×

×

+ +
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Variance

The variance of a discrete random variable X, denoted 𝜎𝑋
2 or 

𝑉(𝑋), is given by

𝜎𝑋
2 = 𝑉 𝑋 = 𝐸 𝑋 − 𝜇𝑋

2
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Several equivalent formulations of variance

𝜎𝑋
2 = 𝐸 𝑋 − 𝜇𝑋

2

𝜎𝑋
2 = 𝐸 𝑋2 − 𝜇𝑋

2

𝜎𝑋
2 =෍

𝑥

𝑥 − 𝜇𝑋
2𝑓(𝑥)

𝜎𝑋
2 =෍

𝑥

𝑥2𝑓(𝑥) − 𝜇𝑋
2
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• Let’s assume there is a bag with three balls in it with numbers 1, 3, 
and 5 written on them. You draw one ball at random.
• X = number written on the ball (random variable)

• x = 1, 3, 5 (possible values of X)

• 𝑓 𝑥 = 𝑃(𝑋 = 𝑥)

𝒙 𝒇(𝒙)

1
1

3

3
1

3

5
1

3

𝜇𝑋 = 𝐸 𝑋 =෍

𝑥

𝑥𝑓 𝑥 = 1 ×
1

3
+ 3 ×

1

3
+ 5 ×

1

3
= 3

𝜎𝑋
2 = σ𝑥 𝑥

2𝑓 𝑥 − 𝜇𝑋
2 = (1)2×

1

3
+ (3)2×

1

3
+ (5)2×

1

3
− 3 2 = 2.66
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Standard Deviation

The square root of variance is called standard deviation, and denoted by 𝜎𝑋

𝜎𝑋 = 𝑉(𝑋)
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• Let’s assume there is a bag with three balls in it with numbers 1, 3, 
and 5 written on them. You draw one ball at random.
• X = number written on the ball (random variable)

• x = 1, 3, 5 (possible values of X)

• 𝑓 𝑥 = 𝑃(𝑋 = 𝑥)

𝒙 𝒇(𝒙)

1
1

3

3
1

3

5
1

3

𝜇𝑋 = 𝐸 𝑋 =෍

𝑥

𝑥𝑓 𝑥 = 1 ×
1

3
+ 3 ×

1

3
+ 5 ×

1

3
= 3

𝜎𝑋
2 = σ𝑥 𝑥

2𝑓 𝑥 − 𝜇𝑋
2 = (1)2×

1

3
+ (3)2×

1

3
+ (5)2×

1

3
− 3 2 = 2.66

𝜎𝑋 = 2.66 = 1.63
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What is the mean of a constant (or a non-random variable)?
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What is the mean of a constant (or a non-random variable)?

𝐸 𝐶 = 𝐶

𝐸 𝑍𝑡 = 𝑍𝑡
10

0

If C is a constant, then

If 𝑍𝑡 is a non-random variable, then

e.g. 𝐸 10 = 10
A constant takes only one 
value, so the “balancing 
point” is that value itself

e.g. if 𝑍𝑡 = 𝑡, then we already 
know that 𝑍1 = 1 , 𝑍2 = 2,… (i.e., 
the values of 𝑍𝑡 are non-random)
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What is the variance of a constant (or a non-random variable)?
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What is the variance of a constant (or a non-random variable)?

𝑉 𝐶 = 0

𝑉 𝑍𝑡 = 0
10

0

If C is a constant, then

If 𝑍𝑡 is a non-random variable, then

e.g. 𝑉 10 = 0 A constant takes only one 
value, so there is no “spread”

e.g. if 𝑍𝑡 = 𝑡, then we already 
know that 𝑍1 = 1 , 𝑍2 = 2,… (i.e., 
the values of 𝑍𝑡 are non-random), 
and so we know that 𝑉 𝑍1 =
𝑉 1 = 0, 𝑉 𝑍2 = 𝑉 2 = 0,…
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Some important properties of the mean

𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌
𝐸 𝑋 − 𝑌 = 𝐸 𝑋 − 𝐸(𝑌)

If X is a random variable and a and b are constants, then

For any two random variables X and Y, we have

For two independent random variables X and Y, we have

𝐸 𝑋𝑌 = 𝐸 𝑋 𝐸(𝑌)
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Some important properties of the mean

𝐸 𝑣(𝑋) =෍

𝑥

𝑣 𝑥 𝑓(𝑥)

If X is a random variable and v(X) is some function of X, then

For example, if 𝑣 𝑋 = 𝑋3, then

𝐸 𝑣(𝑋) = 𝐸(𝑋3) =෍

𝑥

𝑥3𝑓(𝑥)
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Some important properties of variance

𝑉 𝑎𝑋 + 𝑏𝑌 = 𝑎2𝑉 𝑋 + 𝑏2𝑉 𝑌 + 2𝑎𝑏𝐸( 𝑋 − 𝜇𝑋 𝑌 − 𝜇𝑌 )

𝑉 𝑎𝑋 + 𝑏𝑌 = 𝑎2𝑉 𝑋 + 𝑏2𝑉 𝑌
𝑉 𝑎𝑋 − 𝑏𝑌 = 𝑎2𝑉 𝑋 + 𝑏2𝑉(𝑌)

If X and Y are any two random variables and a, b are constants, then

If X and Y are two independent random variables and a, b are constants, then
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Example 1

Consider two zero-mean unit variance random variables X, Y. Define a new random variable W = 2X+Y. 
Given that X and Y are independent, find mean and variance of W.

We are given that

𝜇𝑋 = 𝜇𝑌 = 0
𝜎𝑋
2 = 𝜎𝑌

2 = 1
And 

𝑋, 𝑌 are independent

Therefore
𝜇𝑊 = 𝐸 𝑊 = 𝐸 2𝑋 + 𝑌 = 2𝐸 𝑋 + 𝐸 𝑌 = 0
𝑉 𝑊 = 𝑉 2𝑋 + 𝑌 = 4V X + V Y = 4 + 1 = 5
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Example 2

Consider two zero-mean unit variance random variables X, Z. Define a new random variable W = 2X+Z. 
Given that E(XZ) = 1, find mean and variance of W.

We are given that

𝜇𝑋 = 𝜇𝑍 = 0
𝜎𝑋
2 = 𝜎𝑍

2 = 1

Therefore
𝜇𝑊 = 𝐸 𝑊 = 𝐸 2𝑋 + 𝑍 = 2𝐸 𝑋 + 𝐸 𝑍 = 0

𝑉 𝑊 = 𝑉 2𝑋 + 𝑍 = 4V X + V Z + 2 2 E X − 𝜇𝑋 Z − 𝜇Z = 4 + 1 + 4(1 + 0 + 0 + 0) = 9
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Questions?? Thoughts??
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We have previously talked about …
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Probability Mass Function (PMF): 𝑓(𝑥)

𝑓 𝑥 = 𝑃(𝑋 = 𝑥) Probability that the discrete 
random variable X takes the value x
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What are some of the common distribution 
functions for discrete random variables?
• Next, we will look at some probability distributions (𝑓(𝑥)), that are 

often used in practice for discrete random variables

• These include
• Uniform Distribution

• Binomial Distribution

• Geometric Distribution

• Negative Binomial Distribution

• Poisson Distribution

Based on Bernoulli Trials
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Discrete Uniform Distribution = when all 
possible outcomes have equal probabilities
• X = result of a rolling a die

• 𝑥 = 1, 2, 3, 4, 5, 6 (possible values of X)

• All outcomes have equal probability

• 𝑓 𝑥 = ൝
1

6
, 𝑥 = 1,2,3,4,5,6

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Discrete Uniform Distribution = when all 
possible outcomes have equal probabilities

A random variable 𝑋 has a discrete uniform distribution if it has a finite 
set of outcomes (say 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛), and each outcome has exactly 
the same probability. The distribution of 𝑋 with 𝑛 equally probably 
outcomes may then be written as

𝑓 𝑥 = ቐ
1

𝑛
, 𝑥 = 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Discrete Uniform Distribution = when all 
possible outcomes have equal probabilities

Mean and Variance of a uniformly distributed random variable 𝑋

𝑓 𝑥 = ቐ
1

𝑛
, 𝑥 = 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐸 𝑋 = 𝜇𝑋 = ෍

𝑥

𝑥𝑓(𝑥) =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖

𝑉 𝑋 = ෍

𝑥

𝑥 − 𝜇𝑋
2𝑓 𝑥 =

1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 − 𝜇𝑋
2
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Special case: when 𝒙𝒊 are integers in range [𝒂 𝒃]

Discrete Uniform Distribution
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If 𝑓 𝑥 = ቐ
1

6
, 𝑥 = 1, 2, 3, 4, 5, 6

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

then

𝑎 = 1, 𝑏 = 6

𝐸 𝑋 =
6 + 1

2
= 3.5

𝑉 𝑋 =
6 − 1 + 1 2 − 1

12
=
35

12
= 2.92

Example
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What are some of the common distribution 
functions for discrete random variables?
• Next, we will look at some probability distributions (𝑓(𝑥)), that are 

often used in practice for discrete random variables

• These include
• Uniform Distribution

• Binomial Distribution

• Geometric Distribution

• Negative Binomial Distribution

• Poisson Distribution

Based on Bernoulli Trials
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L

L

L

L

L

L
R

R

R

R

R

R

R

L

LLL

LLR

LRL

LRR

RLL

RLR

RRL

RRR

p

p

p

p

p

p

p

q

q

q

q

q

q

q

- Same experiment is repeated several times
- Each time there are only two possible outcomes

(L or R)
- Each time the probabilities of the two outcomes 

are the same (P(L) = p, P(R)= q)
- All the repetitions are independent of each other

Note that:
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Bernoulli Process & Bernoulli Trials
• An experiment that satisfies the conditions we saw in the previous 

example is called a Bernoulli Process, and each repetition is called a 
Bernoulli Trial.

1. It consists of several repetitions
2. Each repetition is independent of the other
3. Each repetition has only two possible outcomes (usually called 

“success” and “failure”)
4. The probability of “success” is the same during each repetition 

(common notation 𝒑 = 𝑷 "success" , 𝒒 = 𝑷("𝒇𝒂𝒊𝒍𝒖𝒓𝒆"))

In summary, a Bernoulli Process is a random process 
that satisfies the following conditions
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Some Questions we could ask

• What is the probability that in the n repetitions you take exactly x left 
turns?

• What is the probability that the first left turn you take is at repetition 
number x?

• What is the probability that it takes you x repetitions to take exactly r 
left turns?

Each of these leads to a different random variable 
𝑥, with its own probability mass function 𝑓(𝑥)
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L

L

L

L

L

L
R

R

R

R

R

R

R

L

LLL

LLR

LRL

LRR

RLL

RLR

RRL

RRR

p

p

p

p

p

p

p

q

q

q

q

q

q

q

What is the probability that you take three left turns?

Probability (first left and second left and third left) = ?

= 𝑃 𝑡1 = 𝐿 𝑃 𝑡2 = 𝐿 𝑃(𝑡3 = 𝐿)

Let 𝑡1 = first turn, 𝑡2 = second turn, 𝑡3 = third turn

Then,

𝑃 𝑡1 = 𝐿 ∩ 𝑡2 = 𝐿 ∩ 𝑡3 = 𝐿 = ?

= 𝑝 × 𝑝 × 𝑝 = 𝑝3

Recall that for independent events A, B, and C 
we have 𝑷 𝑨 ∩ 𝑩 ∩ 𝑪 = 𝑷 𝑨 𝑷 𝑩 𝑷(𝑪)
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L

L

L

L

L

L
R

R

R

R

R

R

R

L

LLL

LLR

LRL

LRR

RLL

RLR

RRL

RRR

p

p

p

p

p

p

p

q

q

q

q

q

q

q

What is the probability that you take exactly two left turns?

𝑃 𝑡1 = 𝐿 ∩ 𝑡2 = 𝐿 ∩ 𝑡3 = 𝑅
+𝑃 𝑡1 = 𝐿 ∩ 𝑡2 = 𝑅 ∩ 𝑡3 = 𝐿
+𝑃 𝑡1 = 𝑅 ∩ 𝑡2 = 𝐿 ∩ 𝑡3 = 𝐿

= 𝑝𝑝𝑞 + 𝑝𝑞𝑝 + 𝑞𝑝𝑝 = 3𝑝2𝑞

Next, We will use this understanding to 
answer several such questions, and 
develop various probability distributions 
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What are some of the common distribution 
functions for discrete random variables?
• Next, we will look at some probability distributions (𝑓(𝑥)), that are 

often used in practice for discrete random variables

• These include
• Uniform Distribution

• Binomial Distribution

• Geometric Distribution

• Negative Binomial Distribution

• Poisson Distribution

Based on Bernoulli Trials
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Consider an experiment consisting of 𝑛 Bernoulli trials (i.e., independent trials 
with constant probability of “success” denoted 𝑝)

Let 𝑋 = 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒖𝒄𝒄𝒆𝒔𝒔𝒆𝒔 𝑖𝑛 𝒏 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑡𝑟𝑖𝑎𝑙𝑠

Then the probability distribution of 𝑋 is given by

And we say that 𝑋 has a Binomial Distribution

Binomial Distribution

Defining the setup 
(experiment)

Defining the random 
variable

Finding formula for 
distribution of x 

Naming the 
distribution
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Consider an experiment consisting of Bernoulli trials (i.e., independent trials with 
constant probability of “success” denoted 𝑝)

Let 𝑋 = 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒕𝒓𝒊𝒂𝒍𝒔 𝑡𝑖𝑙𝑙 𝑓𝑖𝑟𝑠𝑡 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

Then the probability distribution of 𝑋 is given by

And we say that 𝑋 has a Geometric Distribution

Geometric Distribution

Defining the setup 
(experiment)

Defining the random 
variable

Finding formula for 
distribution of x 

Naming the 
distribution
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Consider an experiment consisting of Bernoulli trials (i.e., independent trials with 
constant probability of “success” denoted 𝑝)

Let 𝑋 = 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒕𝒓𝒊𝒂𝒍𝒔 𝑡𝑖𝑙𝑙 𝒓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠

Then the probability distribution of 𝑋 is given by

And we say that 𝑋 has a Negative Binomial Distribution

Negative Binomial Distribution

Defining the setup 
(experiment)

Defining the random 
variable

Finding formula for 
distribution of x 

Naming the 
distribution
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Recall …

Recall 5! = 5 x 4 x 3 x 2 x 1
And 0! = 1 



EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
22

Interpretations …

Binomial Distribution

𝑥 successes Failures = 𝑛 − 𝑥
Total number of trials = 𝑛

𝑃 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑝 𝑃 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 1 − 𝑝

Number of ways we can have 𝑥
successes in 𝑛 trials knowing 
that the order does not matter

𝑋 = 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒖𝒄𝒄𝒆𝒔𝒔𝒆𝒔 𝑖𝑛 𝒏 𝑡𝑟𝑖𝑎𝑙𝑠



EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
23

S

S

S

S

S

S
F

F

F

F

F

F

F

S

SSS

SSF

SFS

SFF

FSS

FSF

FFS

FFF

p

p

p

p

p

p

p

1-p

What is the probability of two success in three trials?

𝑃 𝑆 ∩ 𝑆 ∩ 𝐹 + 𝑃 𝑆 ∩ 𝐹 ∩ 𝑆 + 𝑃 𝐹 ∩ 𝑆 ∩ 𝑆

= 𝑝𝑝(1 − 𝑝) + 𝑝(1 − 𝑝)𝑝 + (1 − 𝑝)𝑝𝑝 = 3𝑝2(1 − 𝑝)

1-p

1-p

1-p

1-p

1-p

1-p

Using the Binomial Distribution formula 
with 𝑛 = 3, 𝑥 = 2 we get the same result

𝑓 2 =
3

2
𝑝2 1 − 𝑝 =

3!

3 − 2 ! 2!
𝑝2 1 − 𝑝 = 3𝑝2(1 − 𝑝)
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Interpretations …

Geometric Distribution

Success occurs in trial number 𝑥 but 
not before

There are a total of 𝑥 − 1 failures 
before the first success occurs

𝑃 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑝
𝑃 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 1 − 𝑝

𝑋 = 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒕𝒓𝒊𝒂𝒍𝒔 𝑡𝑖𝑙𝑙 𝑓𝑖𝑟𝑠𝑡 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

There has to be at least one trial for 
one success to occur (so no 𝑥 = 0)
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What is the probability of that first success occurs in third trial?

𝑃 𝐹 ∩ 𝐹 ∩ 𝑆

= 1 − 𝑝 1 − 𝑝 𝑝 = 1 − 𝑝 2𝑝

1-p

1-p

1-p

1-p

1-p

1-p

Using the Geometric Distribution formula 
with 𝑥 = 3 we get the same result

𝑓 3 = 1 − 𝑝 2𝑝
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Interpretations …

Negative Binomial 
Distribution

𝑥 − 𝑟 failures 𝑟 successes

There have to be at least 𝑟 trials 
for 𝑟 successes to occur

𝑃 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑝𝑃 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 1 − 𝑝

By definition, we know that the last trial is a 
success, thus we only have to see in how many 
ways can we have remaining  𝑟 − 1 successes in 
the remaining 𝑥 − 1 trials, knowing that order 
does not matter in these 𝑥 − 1 trials. 

𝑋 = 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒕𝒓𝒊𝒂𝒍𝒔 𝑡𝑖𝑙𝑙 𝒓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠
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What is the probability that it takes three trials (not more or less) to get first two successes?

𝑃 𝑆 ∩ 𝐹 ∩ 𝑆 + 𝑃 𝐹 ∩ 𝑆 ∩ 𝑆

= 𝑝(1 − 𝑝)𝑝 + (1 − 𝑝)𝑝𝑝 = 2𝑝2(1 − 𝑝)

1-p

1-p

1-p

1-p

1-p

1-p

Using the Negative Binomial Distribution 
formula with 𝑥 = 3, 𝑟 = 2 we get the 
same result

𝑓 3 =
3 − 1

2 − 1
𝑝2 1 − 𝑝 =

2!

2 − 1 ! 1!
𝑝2 1 − 𝑝

= 2𝑝2(1 − 𝑝)
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Summary of Properties (Range, Mean, Variance)

𝜇𝑋 = 𝐸 𝑋 = 𝑛𝑝

𝜎𝑋
2 = 𝑉 𝑋 = 𝑛𝑝(1 − 𝑝)

Binomial Distribution Geometric Distribution
Negative Binomial Distribution

𝜇𝑋 = 𝐸 𝑋 =
1

𝑝

𝜎𝑋
2 = 𝑉 𝑋 =

1 − 𝑝

𝑝2

𝜇𝑋 = 𝐸 𝑋 =
𝑟 1 − 𝑝

𝑝

𝜎𝑋
2 = 𝑉 𝑋 =

𝑟 1 − 𝑝

𝑝2
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What are some of the common distribution 
functions for discrete random variables?

• Uniform Distribution

• Binomial Distribution

• Geometric Distribution

• Negative Binomial Distribution

• Poisson Distribution

Based on Bernoulli Trials
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What are some of the common distribution 
functions for discrete random variables?

• Uniform Distribution

• Binomial Distribution

• Geometric Distribution

• Negative Binomial Distribution

• Poisson Distribution

Based on Bernoulli Trials

Based on a special “counting” 
process called Poisson Process
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A Counting Process

• We often need to count random events, e.g.,
• How many customers visit a shop in a given time duration

• How many of my students fall asleep during my lecture

• How many people visit a given website in a given time duration

• How many calls you get during the lecture

• How many drops of rain fall in a given area
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A Counting Process

• Let 𝑋 be the number of some specific random events that occur in 
duration, say 𝑡 ( 𝑡 can be any unit of time, length, area, volume etc.)
• E.g., if 𝑡 = 2 hours, then 𝑋 = {number of calls you get in two hours}

• Assume that the counting begins with zero, i.e., 𝑋 = 0 for 𝑡 = 0

8am 9am 10am 11am

𝑋 = # of calls in one hour

𝑋 = # of calls in three hours

𝑋 = # of calls in two hours
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Poisson Process

• Let 𝑋 be the number of some specific random events that occur in a 
duration, say 𝑡

• We say that 𝑋 is a Poisson Random Variable if it satisfies the 
conditions of a Poisson Process, which are as follows
• The number of events in two non-overlapping intervals are independent
• The number of events during an interval depend only on the length of the 

interval
• The probability of two events occurring at exactly the same time is zero 
• The average number of events per unit interval (time, distance etc.) is 

constant (usually denoted by 𝜆) 
• Thus average number of events in interval 𝑡 is 𝜆𝑡
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Poisson Distribution



Examples
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Questions?? Thoughts??
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Continuous Random Variables and Probability 
Distributions 

 

3-1 CONTINUOUS RANDOM VARIABLES 

A continuous random variable has an infinite number of possible values & the 
probability of any one particular value is zero. A continuous random variable is a 
random variable that can assume any value in some interval of numbers, and are thus 
NOT countable. 
Examples: 
 The time that a train arrives at a specified stop 
 The lifetime of a transistor 
 A randomly selected number between 0 and 1 
 Let R be a future value of a weekly ratio of closing prices for IBM stock 
 Let W be the exact weight of a randomly selected student  

 
3-2 PROBABILITY DISTRIBUTIONS AND PROBABILITY DENSITY 
FUNCTIONS 
A random variable is said to be continuous if there is a function f (x) with the 
following properties: 

a) Domain:  all real numbers 
b) Range: f (x) ≥ 0 
c) The area under the entire curve is 1 

Such a function f (x) is called the probability density function (abbreviated p.d.f.) 
The fact that the total area under the curve f (x) is 1 for all X values of the random 
variable tells us that all probabilities are expressed in terms of the area under the curve 
of this function. 
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3-3 CUMULATIVE DISTRIBUTION FUNCTIONS 

 
 0  F(x) 1, for all x 

 

 

 
3-4 MEAN AND VARIANCE OF A CONTINUOUS RANDOM VARIABLE 
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3.5 TWO OR MORE RANDOM VARIABLES 
 Joint Probability Distributions 
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Statistical Independence 
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Continuous Random Variables and Probability 
Distributions 

 
3-6 CONTINUOUS UNIFORM DISTRIBUTION 

 
 

1
( )       if  

( ) 0            otherwise

  




f x a x b
b a

f x

 

 
 
 
 
 

 
Proof 
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3-7 NORMAL DISTRIBUTION 
 

 

 

 

 



       Page 3 of 8   Continuous Random Variables and Probability Distributions                            

 

 

 

 
 

 



       Page 4 of 8   Continuous Random Variables and Probability Distributions                            
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3-8 EXPONENTIAL DISTRIBUTION 

 

 
 
 
 
3.9 The Central Limit Theorem 

 
As the sample size n increases, the distribution of the sample mean  of a random 
sample from a population (not necessarily normal) with mean  and variance 2 
approaches normal with mean  and variance 2/n. 
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E&CE 411, Spring 2009, Table of Q Function 1

Table 1: Values of Q(x) for 0 ≤ x ≤ 9
x Q(x) x Q(x) x Q(x) x Q(x)

0.00 0.5 2.30 0.010724 4.55 2.6823×10−6 6.80 5.231×10−12

0.05 0.48006 2.35 0.0093867 4.60 2.1125×10−6 6.85 3.6925×10−12

0.10 0.46017 2.40 0.0081975 4.65 1.6597×10−6 6.90 2.6001×10−12

0.15 0.44038 2.45 0.0071428 4.70 1.3008×10−6 6.95 1.8264×10−12

0.20 0.42074 2.50 0.0062097 4.75 1.0171×10−6 7.00 1.2798×10−12

0.25 0.40129 2.55 0.0053861 4.80 7.9333×10−7 7.05 8.9459×10−13

0.30 0.38209 2.60 0.0046612 4.85 6.1731×10−7 7.10 6.2378×10−13

0.35 0.36317 2.65 0.0040246 4.90 4.7918×10−7 7.15 4.3389×10−13

0.40 0.34458 2.70 0.003467 4.95 3.7107×10−7 7.20 3.0106×10−13

0.45 0.32636 2.75 0.0029798 5.00 2.8665×10−7 7.25 2.0839×10−13

0.50 0.30854 2.80 0.0025551 5.05 2.2091×10−7 7.30 1.4388×10−13

0.55 0.29116 2.85 0.002186 5.10 1.6983×10−7 7.35 9.9103×10−14

0.60 0.27425 2.90 0.0018658 5.15 1.3024×10−7 7.40 6.8092×10−14

0.65 0.25785 2.95 0.0015889 5.20 9.9644×10−8 7.45 4.667×10−14

0.70 0.24196 3.00 0.0013499 5.25 7.605×10−8 7.50 3.1909×10−14

0.75 0.22663 3.05 0.0011442 5.30 5.7901×10−8 7.55 2.1763×10−14

0.80 0.21186 3.10 0.0009676 5.35 4.3977×10−8 7.60 1.4807×10−14

0.85 0.19766 3.15 0.00081635 5.40 3.332×10−8 7.65 1.0049×10−14

0.90 0.18406 3.20 0.00068714 5.45 2.5185×10−8 7.70 6.8033×10−15

0.95 0.17106 3.25 0.00057703 5.50 1.899×10−8 7.75 4.5946×10−15

1.00 0.15866 3.30 0.00048342 5.55 1.4283×10−8 7.80 3.0954×10−15

1.05 0.14686 3.35 0.00040406 5.60 1.0718×10−8 7.85 2.0802×10−15

1.10 0.13567 3.40 0.00033693 5.65 8.0224×10−9 7.90 1.3945×10−15

1.15 0.12507 3.45 0.00028029 5.70 5.9904×10−9 7.95 9.3256×10−16

1.20 0.11507 3.50 0.00023263 5.75 4.4622×10−9 8.00 6.221×10−16

1.25 0.10565 3.55 0.00019262 5.80 3.3157×10−9 8.05 4.1397×10−16

1.30 0.0968 3.60 0.00015911 5.85 2.4579×10−9 8.10 2.748×10−16

1.35 0.088508 3.65 0.00013112 5.90 1.8175×10−9 8.15 1.8196×10−16

1.40 0.080757 3.70 0.0001078 5.95 1.3407×10−9 8.20 1.2019×10−16

1.45 0.073529 3.75 8.8417×10−5 6.00 9.8659×10−10 8.25 7.9197×10−17

1.50 0.066807 3.80 7.2348×10−5 6.05 7.2423×10−10 8.30 5.2056×10−17

1.55 0.060571 3.85 5.9059×10−5 6.10 5.3034×10−10 8.35 3.4131×10−17

1.60 0.054799 3.90 4.8096×10−5 6.15 3.8741×10−10 8.40 2.2324×10−17

1.65 0.049471 3.95 3.9076×10−5 6.20 2.8232×10−10 8.45 1.4565×10−17

1.70 0.044565 4.00 3.1671×10−5 6.25 2.0523×10−10 8.50 9.4795×10−18

1.75 0.040059 4.05 2.5609×10−5 6.30 1.4882×10−10 8.55 6.1544×10−18

1.80 0.03593 4.10 2.0658×10−5 6.35 1.0766×10−10 8.60 3.9858×10−18

1.85 0.032157 4.15 1.6624×10−5 6.40 7.7688×10−11 8.65 2.575×10−18

1.90 0.028717 4.20 1.3346×10−5 6.45 5.5925×10−11 8.70 1.6594×10−18

1.95 0.025588 4.25 1.0689×10−5 6.50 4.016×10−11 8.75 1.0668×10−18

2.00 0.02275 4.30 8.5399×10−6 6.55 2.8769×10−11 8.80 6.8408×10−19

2.05 0.020182 4.35 6.8069×10−6 6.60 2.0558×10−11 8.85 4.376×10−19

2.10 0.017864 4.40 5.4125×10−6 6.65 1.4655×10−11 8.90 2.7923×10−19

2.15 0.015778 4.45 4.2935×10−6 6.70 1.0421×10−11 8.95 1.7774×10−19

2.20 0.013903 4.50 3.3977×10−6 6.75 7.3923×10−12 9.00 1.1286×10−19

2.25 0.012224
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• Probability is a lack of knowledge.

• Randomly varying or uncertain events may still have some underlying 
characteristics that are “fixed”

• Some of these can be

Probability distribution

Mean, Variance, Covariance

If this does not change over time then the 
random process is strictly stationary

If these do not “vary” over time then the 
random process is weakly stationary

The Random and the Fixed
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What is a random process?

• A random process is a series of random events
• Can be discrete (student heights) or continuous (voice) or discretized 

(digitized voice)

X

[X1 X2 X3 X4 X5 X6  X7  X8 ]

Random 
Event/Variable

Random Process
(discrete)

Heights of next eight 
students who enter the room

Height of next student 
who enters the room



EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
4

But first …

• Let us be clear about what we mean by a random “process”

• A random process is a series of random events
• Can be discrete (student heights) or continuous (voice) or discretized 

(discretized voice)

X(t)  Human speech

Random Process 
(continuous)

[X(t1) X(t2) X(t3) X(t4) X(t5) X(t6) X(t7) X(t8)]
Random Process 
(discrete)

Samples taken at 
times t1, t2, …, t8.
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• Random or uncertain events may still have some underlying 
characteristics that are “fixed”

• Some of these can be

Probability distribution

Mean, Variance, Covariance

Our friends in an uncertain world!
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• Random or uncertain events may still have some underlying 
characteristics that are “fixed”

• Some of these can be

Probability distribution

Mean, Variance, Covariance

If this does not change over time then the 
random process is strictly stationary

If these do not “vary” over time then the 
random process is weakly stationary

Our friends in an uncertain world!
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Revision - Distribution?

• A distribution is a collection of probabilities we assign to random 
events.

• Collection? Graph, table, function
1/6
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Our friends in an uncertain world!

• Random or uncertain events may still have some underlying 
characteristics that are “fixed”

• Some of these can be

Probability distribution

Mean, Variance, Covariance

If this does not change over time then the 
random process is strictly stationary

If these do not “vary” over time then the 
random process is weakly stationary
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Revision: Mean/Average/Expectation

Student Marks

N
u

m
b

er
 o

f 
st

u
d

en
ts

Mean = Center of mass for the distribution (balancing point)

× ×
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Our friends in an uncertain world!

• Random or uncertain events may still have some underlying 
characteristics that are “fixed”

• Some of these can be

Probability distribution

Mean, Variance, Covariance

If this does not change over time then the 
random process is strictly stationary

If these do not “vary” over time then the 
random process is weakly stationary



EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
11

Revision: Variance = degree of spread (how much 
variation is there in the data/outcomes?)

Medium variance
Low variance

High variance
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Our friends in an uncertain world!

• Random or uncertain events may still have some underlying 
characteristics that are “fixed”

• Some of these can be

Probability distribution

Mean, Variance, Covariance

If this does not change over time then the 
random process is strictly stationary

If these do not “vary” over time then the 
random process is weakly stationary
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Covariance = degree of linear relationship 
between data/outcomes 

Can knowledge of one 
random process help us say 
something about the value of 
another?

Yes – if their covariance is 
high!
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Covariance = degree of linear relationship 
between data/outcomes 

Can knowledge of one 
random process help us say 
something about the value of 
another?

Yes – if their covariance is 
high!

One way of checking linear relationship (“covariance”) is to plot 
the two variables against each other.
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Covariance = degree of linear relationship 
between data/outcomes 

Abdallah’s Marks Faisal’s Marks

Quiz 1 4 4

Quiz 2 8 7

Quiz 3 2 1

Quiz 4 4 5

Quiz 5 1 0

Quiz 6 9 10
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Covariance = degree of linear relationship 
between data/outcomes 

Abdallah’s Marks 

Fa
is

al
’s

 M
ar

ks

Abdallah’s Marks 

Fa
is

al
’s

 M
ar

ks

When Abdallah gets high 
marks, so does Faisal –
high linear relation

Abdallah gets high marks 
even when Faisal gets low 
marks – no linear relation
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Covariance = degree of linear relationship 
between data/outcomes 

Abdallah’s Marks 

Fa
is

al
’s

 M
ar

ks

Abdallah’s Marks 

Fa
is

al
’s

 M
ar

ks

?
Abdallah gets high marks 
even when Faisal’s marks 
are low – no linear 
relation



EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
18

Covariance = degree of linear relationship 
between data/outcomes
• Covariance helps us understand if two random processes are 

statistically related or not
• Statistically independent processes have zero covariance

• We usually normalize covariance so that it lies between -1 and 1
• Normalized covariance is called “Correlation”

• Noise in communications is mostly assumed to be independent of the 
message signal (i.e., we often assume zero correlation between signal 
and noise)
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How do we write “covariance” mathematically?

𝐶(𝑋, 𝑌)Covariance of two 
random variables X and Y

𝐶 𝑋, 𝑌 = 0
Independent random variables 
have zero covariance

For a random process we use the 
autocovariance function

Covariance between two 
samples of random process X(t)
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Mean and Autocovariance of a Weakly 
Stationary Process

The mean of a weakly 
stationary process does 
not change with time

𝐶𝑋𝑋(𝑡2 − 𝑡1)The autocovariance function of 
a weakly stationary process 
depends only on the time 
difference between the samples 
and NOT on their actual values 𝐶𝑋𝑋(τ)

or

𝜏 = 𝑡2 − 𝑡1
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Calculating the autocorrelation function

𝑋(𝑡1) 𝑋(𝑡2)

τ = 𝑡2 − 𝑡1

𝑅𝑋𝑋 𝑡1, 𝑡2 = 𝐸[𝑋 𝑡1 𝑋(𝑡2)]
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Calculating the autocorrelation function

• For a weakly stationary process X(t), we have

𝑅𝑋𝑋 𝑡1, 𝑡2 = 𝑅𝑋𝑋 𝑡2 − 𝑡1 = 𝑅𝑋𝑋(𝜏)

𝑋(𝑡1) 𝑋 𝑡2 = 𝑋(𝑡1 + 𝜏)

τ = 𝑡2 − 𝑡1
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Mean and Autocorrelation of a Weakly 
Stationary Process

The mean of a weakly 
stationary process does 
not change with time

𝑅𝑋𝑋 𝑡2 − 𝑡1 = 𝑅𝑋𝑋(𝑡4 − 𝑡3)

The autocorrelation function of 
a weakly stationary process 
depends only on the time 
difference between the samples 
and NOT on their actual values

if 𝑡2 − 𝑡1 = 𝑡4 − 𝑡3 then
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Autocovariance vs. Autocorrelation of a weakly 
stationary process

Covariance between two 
samples of random process X(t)

Correlation between two 
samples of random process X(t)

Autocovariance 
function

Autocorrelation 
function

Only a minor difference 
between the two. 
Conceptually very similar.

𝐶𝑋𝑋 τ =E[(𝑋 𝑡 + 𝜏 − 𝜇𝑋)(𝑋 𝑡 − 𝜇𝑋)]

𝑅𝑋𝑋 τ =E[𝑋 𝑡 + 𝜏 𝑋 𝑡 ]
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Important properties of the autocorrelation 
function

It can be used to calculate 
power of the signal

It is symmetric At no point it exceeds 
the average power



Ergodic Processes
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Ergodic Processes
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A stationary random process is said 
to be “ergodic in the mean” if

𝒆𝒏𝒔𝒂𝒎𝒃𝒍𝒆 𝒎𝒆𝒂𝒏 = 𝒕𝒊𝒎𝒆𝒎𝒆𝒂𝒏
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Questions?? Thoughts??
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Fourier Transform
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3

Spectra – the Ghosts in Your Signal



Q. Can we write signals as sums of 
periodic functions (frequencies)?

4



Baking a Fourier Cake

5

• Given: Signal shape (time-domain)
• Ingredients: Sinusoids of different frequencies
• Choose: How much of the each ingredient (sinusoid) to use?
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• In Fourier Transform, we want to look at signals in terms of a fixed set 
of ingredients
• Ingredients : Sinusoids of different frequencies

=
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• In Fourier Transform, we want to look at signals in terms of a fixed set 
of ingredients
• Ingredients : Sinusoids of different frequencies

=

Ingredient
(sinusoid frequency)

Amount 
(scaling)

Process

f1 1 Add all

f2 0.5

f3 0.25
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• How is this shown after Fourier transform?

Ingredient
(sinusoid frequency)

Amount 
(scaling)

Process

5 Hz 1 Add all

10 Hz 0.5

15 Hz 0.25

Scaling

Frequency (Hz)

5 10 15

1

0.5

0.25
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• We mostly skip the middle steps

Scaling

Frequency (Hz)

5 10 15

1

0.5

0.25

Fourier Transform

Inverse
Fourier Transform

Time

A
m

p
lit

u
d

e
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Power Spectrum
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Frequency content of a random process

• We’ve seen that
• Fourier Transform can be used to see the 

“frequency content” of a signal

• But what if the signal is random?
• Problem: frequency content may change 

from one realization to another!

A and 𝜙 random variables
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Autocorrelation Function to the rescue!!

• We’ve seen that
• Fourier Transform can be used to see the “frequency content” of a signal

• But what if the signal is random?
• Problem: frequency content may change from one realization to another!

• Two important observations can help us out
• 1. The autocorrelation function of a weakly stationary process remains “fixed” between 

realizations
• 2. The autocorrelation function contains the same frequencies as the original signal (with 

“average power” scalings)

• Solution:
• For a random process it is better to take the Fourier Transform of the covariance function
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For a random process it is better to take the Fourier 
Transform of the autocorrelation function!!

• Power Spectrum = Fourier Transform of the autocorrelation function

• Mathematically speaking …



Recall…
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𝑅𝑋𝑋 τ =E[𝑋 𝑡 + 𝜏 𝑋 𝑡 ]
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Linear Systems
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What happens to a signal as it passes through 
a system?

• We shall only consider a special type of systems called LTI (linear 
time-invariant systems).

• We shall only consider weakly stationary signals.

System = channel, filter, etc.
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What happens to a signal as it passes through 
a system?

• An LTI system is fully characterized by its Impulse Response (IR)
• IR = what output the system gives when the input is an impulse (a theoretical 

sharp pulse)

System = channel, filter, etc.



• If we know the impulse response of an LTI system we can find its 
output to any signal by using convolution
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What happens to a signal as it passes through 
a system? System = channel, filter, etc.



• LTI system can also be fully characterized by its Transfer Function (TF)
• TF = Fourier Transform of Impulse Response

• TF = what the system does to different frequencies of the signal (e.g., blocks, 
allows unchanged, amplifies, attenuates)
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What happens to a signal as it passes through 
a system? System = channel, filter, etc.

1

2

0.5

Transfer Function
Input Frequencies

output Frequencies

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5𝑓6 𝑓6

Attenuated

Unchanged

Amplified

Blocked



• If we know the Transfer Function of an LTI system we can find what it 
does to the frequencies of a deterministic signal by using simple 
multiplication in frequency domain
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What happens to a signal as it passes through 
a system? System = channel, filter, etc.



• If we know the Transfer Function of an LTI system we can find what it 
does to the power spectrum of weakly stationary random signal by
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What happens to a signal as it passes through 
a system? System = channel, filter, etc.
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Questions?? Thoughts??
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